This Version 3.0 is authored by Briana Ramirez, edited by Samuel Shen. Liu Yang, Sandra Villamar, and Joaquin Stawsky contributed codes to this version.
Video tutorial for the python code can be found at the following URL: https://www.youtube.com/channel/UC7D9i0kBMzPTHyEhU0h6W9g
This version is based upon the previous version described in the following box.
######################################################################################################################
#This Python Code for Climate Science is written for the book entitled "Climate Mathematics: Theory and Applications"#
#A Cambridge University Press book authored by SSP Shen and RCJ Somerville in July 2019 #
#The Python codes were based on the R codes written by Samuel Shen Distinguished Professor, #
#San Diego State University, USA and were translated from R by Louis Selstad, Stephen Shen, #
#Gregori Clarke, and Dakota Newmann and edited by Samuel Shen. #
######################################################################################################################
#FIRST TIME Python users*****
#These package need to be installed (on the terminal or anaconda interface) before importing them below.
#Follow this tutorial for package installation before
# https://towardsdatascience.com/importerror-no-module-named-xyz-45e4a5339e1b
#Change your file path to the folder where your downloaded data is stored
#MAC HELP: https://support.apple.com/guide/mac-help/go-directly-to-a-specific-folder-on-mac-mchlp1236/mac
#PC HELP: https://www.sony.com/electronics/support/articles/00015251
import os
# os.chdir("/Users/sshen/climmath/data")
os.chdir('/Users/HP/Documents/sshen/climmath/data')
%%javascript
IPython.OutputArea.prototype._should_scroll = function(lines) {
return false;
}
#Style Dictionary to standardize plotting scheme between different python scripts
import matplotlib.pyplot as plt
styledict = {'xtick.labelsize':20,
'xtick.major.size':9,
'xtick.major.width':1,
'ytick.labelsize':20,
'ytick.major.size':9,
'ytick.major.width':1,
'legend.framealpha':0.0,
'legend.fontsize':15,
'axes.labelsize':20,
'axes.titlesize':25,
'axes.linewidth':2,
'figure.figsize':(12,8),
'savefig.format':'jpg'}
plt.rcParams.update(**styledict)
#Function that creates personalized discrete Colormap
import numpy as np
from matplotlib import cm as cm1
from matplotlib.colors import ListedColormap, to_rgba
def newColMap(colors):
"""
This function creates a new color map from a list of colors given
as a parameter. Recommended length of list of colors is at least 6.
"""
first = np.repeat([to_rgba(colors[0])], 2, axis = 0)
last = np.repeat([to_rgba(colors[-1])], 2, axis = 0)
v = cm1.get_cmap('viridis', 16*(len(colors)-2))
newcolors = v(np.linspace(0, 1, 16*(len(colors)-2)))
for (i, col) in enumerate(colors[1:-1]):
newcolors[16*i : 16*(i+1), :] = to_rgba(col)
return ListedColormap(np.append(np.append(first,newcolors, axis=0), last, axis=0))
import numpy as np
import matplotlib
from matplotlib import cm as cm1
import matplotlib.pyplot as plt
import pandas as pd
import warnings
import os
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from scipy import optimize as opt
import sympy as sm
import math as m
import cartopy
import netCDF4 as nc
from matplotlib.colors import LinearSegmentedColormap
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from mpl_toolkits.basemap import Basemap, cm, shiftgrid, addcyclic
from matplotlib.patches import Polygon
from datetime import datetime
from scipy.ndimage import gaussian_filter
from sklearn import datasets, linear_model
from sklearn.neighbors import KernelDensity as kd
from sklearn.linear_model import LinearRegression
from pylab import *
warnings.filterwarnings("ignore")
# create two arrays, x and y, ranging from 0 to 2*pi
# create a 3D array full of zeros for use later
x = y = np.linspace(0.,2*np.pi,100)
mydat = np.zeros((100,100,10))
# define a function that iterates term by term for the two variables into a specific function
def zfunc(x,y):
# the triple nested for loop accomplishes term by term order we are looking for
for t in range(0,10):
for i in range(0,100):
for j in range(0,100):
mydat[i,j,t] = (np.sin(t+1)*(1/np.pi)*np.sin(x[i])*np.sin(y[j])
+ np.exp(-0.3*(t+1))*(1/np.pi)*np.sin(8*x[i])*np.sin(8*y[j]))
# print the shape and maximum of the result
print(np.shape(mydat))
print(np.max(mydat))
return mydat
# plug in our x and y arrays
mydata = zfunc(x,y)
(100, 100, 10) 0.4909421672431401
#Fig 10.1
# set a range for the contour plot
maxi = np.linspace(-.5,.5,100)
# define the contour plot using previous x, y, and mydata arrays
cmap = cm.get_cmap('hsv', 20)
CS = plt.contourf(x,y,mydata[:,:,0],maxi,cmap=cmap)
# add titles for the graph and axes
plt.title('Original field at t = 1', pad = 10)
plt.xlabel('x')
plt.ylabel('y')
# add a color bar with a label
cbar = plt.colorbar(CS, ticks=[0.4,0.2,0,-0.2,-0.4])
plt.text(6.55, 6.45, "Scale", size=20)
# show figure
plt.show()
# set a range for the contour plot
maxi = np.linspace(-.2,.2,100)
# define the contour plot using previous x, y, and mydata arrays
cmap = cm.get_cmap('hsv', 20)
# CS = plt.contourf(x,y,np.flip(mydata[:,:,10], axis=1),maxi,cmap=cmap)
CS = plt.contourf(x,y,mydata[:,:,9],maxi,cmap=cmap)
# add titles for the graph and axes
plt.title('Original field at t = 10', pad = 10)
plt.xlabel('x')
plt.ylabel('y')
# add a color bar with a label
cbar = plt.colorbar(CS, ticks=[0.2,0.1,0,-0.1,-0.2])
plt.text(6.5, 6.5, "Scale", size=20)
# save figure as a .png file
plt.show()
# define variables
x = y = np.linspace(0.,2.*np.pi,100)
# create a matrix of zeros of size (10000,10)
da = np.matrix(np.zeros((np.size(x)*np.size(y),10)))
# define a function that reshapes mydata into a new array of size
def twod_func(x,y,a):
for i in range(0,10):
a[:,i] = np.reshape(mydata[:,:,i],(10000,1))
return a
da1 = twod_func(x,y,da)
# SVD for EOFs
u, s, vh = np.linalg.svd(da1,full_matrices=False)
v = np.transpose(vh)
# to show the accuracy of the svd
x_a = np.dot(np.dot(u,np.diag(s)),vh)
# create an array of zeros of size (100,100)
u2 = np.zeros((100,100))
# define a function that takes all the entries in the first column
# of the u matrix, transposes it and reshapes it into size (100,100)
def dig():
y1 = np.transpose(u[:,0])
u2 = np.reshape(-y1,(100,100))
return u2
def dig2():
y1 = np.transpose(u[:,1])
u2 = np.reshape(-y1,(100,100))
return u2
# create zero matrix, as well as u-mat, from the dig fuction and u-mat2 from the dig2 fuction
zeros = np.zeros((100,100))
u_mat = dig()
u_mat2 = dig2()
# define two more functions that call upon the above z functions to generate spatial data
def fcn1(x,y):
for i in range(0,100):
for j in range(0,100):
zeros[i,j] = z1(x[i],y[j])
return zeros
def fcn2(x,y):
for i in range(0,100):
for j in range(0,100):
zeros[i,j] = z2(x[i],y[j])
return zeros
# define two different functions to be used below
def z1(x,y):
return (1./np.pi)*np.sin(x)*np.sin(y)
def z2(x,y):
return (1./np.pi)*np.sin(8.*x)*np.sin(8.*y)
# create desired Colormap
colors = ["crimson","red","red","red","tomato","lightpink",
"pink","peachpuff","yellow","yellow", "yellowgreen","limegreen","limegreen","white","lavenderblush",
"darkorchid","indigo","indigo","rebeccapurple","darkmagenta","mediumvioletred","mediumvioletred","black"]
colors.reverse()
cmap = newColMap(colors)
colors1 = ["crimson","red","tomato","lightpink",
"pink","peachpuff","yellow", "yellowgreen","limegreen","white","lavenderblush",
"darkorchid","indigo","rebeccapurple","darkmagenta","mediumvioletred","black"]
colors1.reverse()
cmap1 = newColMap(colors1)
#Fig 10.2
# graph the EOF
size = np.linspace(-2.5e-2,2.5e-2,25)
bounds = np.array([-0.02,-0.01,0.0,.01,0.02])
bounds_d = np.array([-0.3,-0.2,-0.1,0,0.1,0.2,0.3])
# set up the figure
plt.subplot(221)
# plot the data
dig = plt.contourf(x,y,u_mat,size,cmap=cmap)
# set labels and title
plt.title('SVD Mode 1: EOF1')
plt.ylabel('y')
plt.xticks([0,1,2,3,4,5,6], size=14)
plt.yticks([0,1,2,3,4,5,6],rotation=90, size=14)
# print colorbar
cbar = plt.colorbar(dig, ticks = bounds)
cbar.ax.tick_params(labelsize='large')
# create second plot
plt.subplot(223)
lvl = np.linspace(-.35,.35,35)
# plot data and set labels
contour = plt.contourf(x,y,fcn1(x,y),lvl,cmap=cmap1)
plt.title('Accurate Mode 1')
plt.xlabel('x')
plt.ylabel('y')
plt.yticks([0,1,2,3,4,5,6], rotation=90, size=14)
plt.xticks([0,1,2,3,4,5,6], size=14)
cbar = plt.colorbar(contour, ticks = bounds_d)
cbar.ax.tick_params(labelsize='large')
# plot third plot
plt.subplot(222)
dig = plt.contourf(x,y,np.flip(u_mat2,axis=1),size,cmap=cmap)
plt.title('SVD Mode 2: EOF2')
plt.ylabel('y')
plt.yticks([0,1,2,3,4,5,6],rotation=90, size=14)
plt.xticks([0,1,2,3,4,5,6], size=14)
cbar = plt.colorbar(dig, ticks = bounds)
cbar.ax.tick_params(labelsize='large')
# plot fourth plot
plt.subplot(224)
lvl = np.linspace(-.35,.35,35)
contour = plt.contourf(x,y,fcn2(x,y),lvl,cmap=cmap1)
plt.title('Accurate Mode 2')
plt.xlabel('x')
plt.ylabel('y')
plt.yticks([0,1,2,3,4,5,6],rotation=90, size=14)
plt.xticks([0,1,2,3,4,5,6], size=14)
plt.tight_layout()
cbar = plt.colorbar(contour, ticks = bounds_d)
cbar.ax.tick_params(labelsize='large')
plt.show()
#Fig 10.3
# create variable
t = np.array(range(1,11))
# plot separate lines based on different formulas
plt.plot(t,v[:,0],color='k',marker='o',label='PC1: 83% Variance')
plt.plot(t,v[:,1],color='r',marker='o',label='PC2: 17% Variance')
plt.plot(t,-np.sin(t),color='b',marker='o',label='Original Mode 1 Coefficient: 91% variance')
plt.plot(t,-np.exp(-.3*t),color='m',marker='o',label='Original Mode 2 Coefficient: 9% variance')
# set labels
plt.ylim(-1.1,1.1)
plt.xlabel('Time')
plt.ylabel('PC or Coefficient')
plt.yticks([1,0.5,0,-0.5,-1])
plt.title('SVD PCs vs. Accurate Temporal Coefficients')
# show legend and plot
plt.legend(loc = 'upper left', fontsize=20)
plt.show()
# create arrays to compute a dot product
t = np.array(range(1,11))
# make sine function
def sinarr(t):
rslt = np.zeros(t)
for ii in range(1,t+1):
rslt[ii-1] = -np.sin(ii)
return rslt
# make exponential function
def exparr(t):
rslt = np.zeros(t)
for jj in range(1,t+1):
rslt[jj-1] = -np.exp(-.3*jj)
return rslt
# create variables using above functions
sin = sinarr(10)
exp = exparr(10)
print('Dot Product:',np.dot(np.transpose(sin),exp))
# find the variances and compare them
v1 = np.var(sin)
v2 = np.var(exp)
print("Variance:",v1/(v1+v2))
# find the product of the PC's
v_1 = np.transpose(v[:,0])
v_2 = v[:,1]
print("Dot Product of PCs:" , np.dot(v_1,v_2))
Dot Product: 0.8625048359266784 Variance: 0.9098719287510537 Dot Product of PCs: [[2.08166817e-17]]
# create arrays that will be used below
# and check the sizes of the arrays for matrix multiplication
sdiag = np.diag(s)
vtran = np.transpose(v[:,0:1])
# create two new arrays, B and B1 multiplying the previous
# matrices together, being careful to match their sizes
B = np.transpose(np.matmul(np.matmul(u[:,0:1],sdiag[0:1,0:1]),vtran))
B1 = np.matmul(np.matmul(u,sdiag),np.transpose(v))
#Fig 10.4
# reshaping B to plot it
BB = np.reshape(B[4,:],(100,100))
scale = np.linspace(-.4,.4,25)
bounds = [0.4,0.2,0,-0.2,-0.4]
cmap = cm.get_cmap('hsv', 15)
# set up figure
fig = plt.figure(figsize=(14,6))
# create subplot
plt.subplot(121)
BBplot = plt.contourf(x,y,BB,scale,cmap = cmap)
# set labels
plt.title('(a) 2-mode SVD reconstructed field t = 5', size=18)
plt.xlabel('x')
plt.ylabel('y')
plt.xticks([0,1,2,3,4,5,6])
# print colorbar
cbar = plt.colorbar(BBplot, ticks=bounds)
cbar.ax.tick_params(labelsize='large')
# reshaping B to plot it
new_B = B1.T
BB = np.reshape(new_B[4,:],(100,100))
# create subplot
plt.subplot(122)
BBplot = plt.contourf(x,y,BB,scale,cmap = cmap)
# set labels
plt.title('(b) All-mode SVD reconstructed field t = 5', size=18)
plt.xlabel('x')
plt.ylabel('y')
plt.xticks([0,1,2,3,4,5,6])
# create colorbar
cbar = plt.colorbar(BBplot, ticks=bounds)
cbar.ax.tick_params(labelsize='large')
plt.tight_layout()
#Download the following data set from NOAA into your active folder
# https://www.esrl.noaa.gov/psd/repository/entry/show?
# entryid=synth%3Ae570c8f9-ec09-4e89-93b4-babd5651e7a9%
# 3AL25jZXAucmVhbmFseXNpcy5kZXJpdmVkL3N1cmZhY2UvYWlyLm1vbi5tZWFuLm5j
ncd = nc.Dataset("air.mon.mean.nc","r+")
#Define variables
lon_vals = ncd.variables['lon']
lat_vals = ncd.variables['lat']
time = ncd.variables['time']
air = ncd.variables['air']
time_unit = time.units
precnc = ncd.variables['air']
# understanding the time range of the data
start = time.actual_range[0]
end = time.actual_range[1]
hrs_pr_yr = 8760.812777
start_yrs_after_1800 = start/hrs_pr_yr
end_yrs_after_1800 = end/hrs_pr_yr
print(round(start_yrs_after_1800 + 1800, 1), round(end_yrs_after_1800 + 1800, 1))
1948.1 2016.9
#Fig 10.5
# plot a 90S-90N temp along a meridional line at 180E
# create variables
nc_x = np.linspace(-90,90,73)
y = list(precnc[0,:,71])
y.reverse()
# plot data
plt.plot(nc_x,y,marker="o",color='k' )
# set labels and show figure
plt.xlabel('Latitude')
plt.ylabel('Temperature [$\degree$C]')
plt.yticks(rotation=90)
plt.title('NCEP/NCAR Reanalysis Surface Air Temperature [$\degree$C] \n along a Meridional Line at $180\degree$E: Jan. 1948'
, pad = 10)
plt.grid()
plt.show()
list(precnc[0,:,71]).reverse()
precnc.shape
(826, 73, 144)
# define variables
precst = np.zeros((10512,826))
temp = np.reshape(precnc[0,:,:],(144*73))
print(np.shape(temp))
print(temp[0:6])
# create reshaping function
def spmat(x,y):
for i in range(0,826):
y[:,i] = np.reshape(x[i,:,:],(144*73))
return y
# use function and save result
precst2 = spmat(precnc,precst)
print(np.shape(precst2))
# build lat and lon for 10512 spatial positions using rep
def rep(x,y,n):
for j in range(0,n):
x = np.append(x,y)
return x
arra = np.zeros((0))
LAT = rep(arra,lat_vals,144)
LON = rep(arra,lon_vals[0],73)
print(LON)
# create reconstruction function
def recon():
rslt = LON
for jj in range(0,143):
rslt = np.append(rslt,rep(arra,lon_vals[jj],73))
return rslt
LON2 = recon()
print("The last 6 entries are:",LON2[-6:])
# creating an array with first two columns of lat and lon
# with 826 months spanning from 1948-2016
gpcpst_ = np.column_stack((LAT,(LON2)))
gpcpst = np.column_stack((gpcpst_,precst2))
(10512,) [-34.926773 -34.926773 -34.926773 -34.926773 -34.926773 -34.926773] (10512, 826) [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] The last 6 entries are: [355. 355. 355. 355. 355. 355.]
# create an array of all ones for the days of the data
ones = np.ones(826)
# define a function to create a list of months repeating to match the size of our data
def monthfunc():
montharr = np.zeros(0)
for i in range(1,71):
for j in range(1,13):
montharr = np.append(montharr,int(j))
for k in range(1,6):
montharr = np.append(montharr,int(k))
return montharr
months = monthfunc()
# define a function to create a list of years to match the size of our data
def yearfunc():
yeararr = np.zeros(0)
for i in range(1948,2018):
for j in range(1,13):
yeararr = np.append(yeararr,i)
for k in range(1,6):
yeararr = np.append(yeararr,2018)
return yeararr
years = yearfunc()
# define a function that pairs a string version of our year and month arrays with a dash
# in between these will serve as our column names for our data
def tmfunc():
empty = np.zeros(0)
for i in range(0,826):
empty = np.append(empty,str(years[i]) + '-' + str(months[i]))
return empty
tm1 = tmfunc()
# add the 'Lat' and 'Lon' columns to the beginning
# of our column names array
tm2 = np.append(['Lat','Lon'],tm1)
# use the package pandas.DataFrame to match the column names with the data
GPCPST = pd.DataFrame(gpcpst,columns=tm2)
monJ = np.array(range(0,826,12))
gpcpdat = GPCPST.iloc[:,2:826]
gpcpJ = gpcpdat.iloc[:,monJ]
climJ = gpcpJ.mean(axis=1)
# create desired functions
def rowSDS2():
rslt = []
for jj in range(0,10512):
rslt = np.append(rslt,np.std(gpcpJ.iloc[jj,:]))
return rslt
sdJ = gpcpJ.std(axis=1)
def anomJ_func2():
rslt = pd.DataFrame(np.zeros((10512, 69)),columns=tm1[monJ])
for i in range(0,69):
rslt.iloc[:,i] = (gpcpdat.iloc[:,monJ[i]]-climJ)/sdJ
return rslt
anomJ = anomJ_func2()
def anomJ_func3():
rslt = pd.DataFrame(np.zeros((10512, 69)),columns=tm1[monJ])
for i in range(0,69):
rslt.iloc[:,i] = np.sqrt(np.cos(GPCPST.iloc[:,0]*np.pi/180.))*anomJ.iloc[:,i]
return rslt
anomAW = anomJ_func3()
# computing SVD from the area-weighted anomaly matrix anomAW
U, S, Vh = np.linalg.svd(anomAW,full_matrices=False)
print(U.shape,S.shape,Vh.shape)
(10512, 69) (69,) (69, 69)
#Fig 10.6
# create variables
xvals = np.linspace(0.,70.,69)
yvals = 100.*(S**2.)/np.sum(S**2)
# create two subplots
fig, ax1 = plt.subplots()
# plot of first plot
ax1.scatter(xvals,yvals,marker = "o",facecolors='none',edgecolors='k')
ax1.plot(xvals,yvals,color='k',label = "Percentage Variance ")
ax1.set_ylabel('Percentage Variance [%]',color='k')
ax1.set_xlabel('Mode number',color='k')
ax1.tick_params(axis='y',labelcolor='k')
ax1.grid()
# twin the axis to prepare second plot
ax2 = ax1.twinx()
# plot data on second axis
ax2.scatter(xvals,yvals.cumsum(),marker = "o",facecolors='none',edgecolors='b')
ax2.plot(xvals,yvals.cumsum(),color='b',label = "Cumulative Variance")
# set labels
ax2.set_ylabel('Cumulative Variance [%]',color='b')
ax2.tick_params(axis='y',labelcolor='b')
ax1.legend(loc=(.5,.5))
ax2.legend(loc=(.5,.45))
plt.title("Eigenvalues of Covariance Matrix")
# show figure
plt.show()
# define function
def mapmatr():
q = np.zeros((144,73))
for ii in range(0,144):
q[ii,:] = U[:,0]/(np.sqrt(np.cos(gpcpst[:,0]
*np.pi/180.)))
return q
# reshape data using result of SVD
mapmatr = (np.reshape(U[:,0]/(np.sqrt(np.cos(gpcpst[:,0]
*np.pi/180.))),(73,144)))
mapmatr2 = mapmatr[:,range(0,mapmatr[0,:].size)]
# make Colormap and create desired Colormap
# colors = ["darkred","red","darkorange","orange","yellow","lightyellow","white","lightgreen"
# ,"green","blue","darkblue", "black"]
# colors.reverse()
# myColMap = newColMap(colors)
myColMap = LinearSegmentedColormap.from_list(name='my_list', colors=['blue',
'green','white','yellow','red'], N=256)
#Fig 10.7
# prepare figure
plt.figure(figsize=(12,12))
# plot EOF1
plt.subplot(211)
# using the basemap package to put the cylindrical projection map into the image
eof = Basemap(projection='cyl',llcrnrlat=-90.,urcrnrlat=90.,\
llcrnrlon=0.,urcrnrlon=360.,resolution='c')
# shifting the data because
lons2, data2 = eof.shiftdata(lon_vals, datain = -mapmatr2, lon_0=180)
# draw coastlines, latitudes, and longitudes on the map
eof.drawcoastlines(color='black', linewidth=1)
eof.drawparallels(np.arange(-90.,91.,30.), labels = [1,0,0,1], fontsize=15)
eof.drawmeridians(np.arange(-180.,181.,60.), labels= [1,0,0,1], fontsize=15)
eof.drawcountries()
limits = np.linspace(-.04,.04,51)
# plot data on contour map
eof_plt = plt.contourf(np.array(lons2),np.array(lat_vals),data2,limits,cmap = myColMap)
# set labels and colorbar bounds
bounds = np.array([-0.04,-0.02,0,0.02,0.04])
efo = plt.colorbar(eof_plt, ticks = bounds, shrink = 0.85)
efo.ax.tick_params(labelsize='large')
plt.text(375, 93, 'Scale', size=16)
plt.xlabel('Longitude',labelpad = 30)
plt.ylabel('Latitude',labelpad =40)
plt.title('January EOF1 from 1948-2017 NCEP Temp. Data', pad = 10)
# retrieve PC1 from SVD
pcdat = Vh[0,:]
# open bottom plot
plt.subplot(212)
#create time variable
TIME = np.array(range(1948,2017))
# plot data
plt.scatter(TIME,-pcdat,marker = "o",facecolors='none',edgecolors='k')
plt.plot(TIME,-pcdat,color='k')
plt.title("PC1 of NCEP RA Jan. SAT: 1948-2017", pad = 10)
plt.xlabel("Year")
plt.ylabel("PC Values")
plt.grid()
plt.tight_layout()
plt.show()
#Fig 10.8
# prepare figure
plt.figure(figsize=(12,12))
# plot EOF2 by reshaping data from SVD
mapmatr = (np.reshape(U[:,1]/(np.sqrt(np.cos(gpcpst[:,0]
*np.pi/180.))),(73,144)))
mapmatr2 = mapmatr[:,range(0,mapmatr[0,:].size)]
# open first subplot
plt.subplot(211)
# using the basemap package to put the cylindrical projection map into the image
eof = Basemap(projection='cyl',llcrnrlat=-90.,urcrnrlat=90.,\
llcrnrlon=0.,urcrnrlon=360.,resolution='c')
# shifting the data
lons2, data2 = eof.shiftdata(lon_vals, datain = -mapmatr2, lon_0=180)
# draw coastlines, latitudes, and longitudes on the map
eof.drawcoastlines(color='black', linewidth=1)
eof.drawparallels(np.arange(-90.,91.,30.), labels = [1,0,0,1], fontsize=15)
eof.drawmeridians(np.arange(-180.,181.,60.), labels= [1,0,0,1], fontsize=15)
eof.drawcountries()
# create contour limits
limits = np.linspace(-.04,.04,51)
# plot data
eof_plt = plt.contourf(np.array(lons2),np.array(lat_vals),data2,limits,cmap = myColMap)
# set labels and colorbar bounds
bounds = np.array([-0.04,-0.02,0,0.02,0.04])
efo = plt.colorbar(eof_plt, ticks=bounds, shrink = 0.85)
efo.ax.tick_params(labelsize='large')
plt.text(375, 93, 'Scale', size=16)
plt.xlabel('Longitude',labelpad = 30)
plt.ylabel('Latitude',labelpad =40)
plt.title('January EOF2 from 1948-2017 NCEP Temp. Data', pad = 10)
pcdat = Vh[1,:]
# open bottom plot
plt.subplot(212)
# create time variable
TIME = np.array(range(1948,2017))
# plot PC2
plt.scatter(TIME,-pcdat,marker = "o",facecolors='none',edgecolors='k')
plt.plot(TIME,-pcdat,color='k')
plt.title("PC2 of NCEP RA Jan. SAT: 1948-2017", pad = 10)
plt.xlabel("Year")
plt.ylabel("PC Values")
plt.grid()
plt.tight_layout()
plt.show()
#Fig 10.9
# set figure up
plt.figure(figsize=(12,12))
# create data from SVD
mapmatr = (np.reshape(U[:,2]/(np.sqrt(np.cos(gpcpst[:,0]
*np.pi/180.))),(73,144)))
mapmatr2 = mapmatr[:,range(0,mapmatr[0,:].size)]
# open first plot
plt.subplot(211)
# using the basemap package to put the cylindrical projection map into the image
eof = Basemap(projection='cyl',llcrnrlat=-90.,urcrnrlat=90.,\
llcrnrlon=0.,urcrnrlon=360.,resolution='c')
# shifting the data because
lons2, data2 = eof.shiftdata(lon_vals, datain = -mapmatr2, lon_0=180)
# draw coastlines, latitudes, and longitudes on the map
eof.drawcoastlines(color='black', linewidth=1)
eof.drawparallels(np.arange(-90.,91.,30.), labels = [1,0,0,1], fontsize=15)
eof.drawmeridians(np.arange(-180.,181.,60.), labels= [1,0,0,1], fontsize=15)
eof.drawcountries()
limits = np.linspace(-.04,.04,51)
# plot data
eof_plt = plt.contourf(np.array(lons2),np.array(lat_vals),data2,limits,cmap = myColMap)
# set labels and colorbar bounds
bounds = np.array([-0.04,-0.02,0,0.02,0.04])
efo = plt.colorbar(eof_plt, ticks=bounds, shrink = 0.85)
efo.ax.tick_params(labelsize='large')
plt.text(375, 93, 'Scale', size=16)
plt.xlabel('Longitude',labelpad = 30)
plt.ylabel('Latitude',labelpad =40)
plt.title('January EOF3 from 1948-2017 NCEP Temp. Data', pad = 10)
pcdat = Vh[2,:]
# open bottom plot
plt.subplot(212)
# create time variable
TIME = np.array(range(1948,2017))
# plot data
plt.scatter(TIME,-pcdat,marker = "o",facecolors='none',edgecolors='k')
plt.plot(TIME,-pcdat,color='k')
# set labels
plt.title("PC3 of NCEP RA Jan. SAT: 1948-2017", pad = 10)
plt.xlabel("Year")
plt.ylabel("PC Values")
plt.grid()
plt.tight_layout()
plt.show()
GPCPST.shape
(10512, 828)
# EOF from de-trended data
monJ = np.array(range(0,815,12))
gpcpdat = GPCPST.iloc[:,2:817]
gpcpJ = gpcpdat.iloc[:,monJ]
climJ = gpcpJ.mean(axis=1)
sdJ = gpcpJ.std(axis=1)
anomJ = ((gpcpdat.iloc[:,monJ].T-climJ)/sdJ).T
# create linear regression object
regr = linear_model.LinearRegression()
print(anomJ.iloc[0,:].shape)
(68,)
# create time variable
TIME = np.array(range(1948,2016))
# create trend V
def trendV():
trendV = np.zeros(10512)
for i in range(0,10512):
regr.fit(np.reshape(TIME,(68,1)),
np.reshape(np.array(anomJ.iloc[i,:]),(68,1)))
trendV[i] = regr.coef_
return trendV
# create trend M
def trendM():
rslt = np.zeros((10512,68))
trendM = pd.DataFrame(np.zeros((10512, 68)),columns=tm1[monJ])
for i in range(0,10512):
regr.fit(np.reshape(TIME,(68,1)),
np.reshape(np.array(anomJ.iloc[i,:]),(68,1)))
rslt[i,:] = regr.intercept_
return rslt
# make trend V instance
trendV = trendV()
print(trendV)
[ 0.02303803 0.02303803 0.02303803 ... -0.03220623 -0.03220623 -0.03220623]
# make trend M instance
trendM = trendM()
print(trendM)
[[-45.64986127 -45.64986127 -45.64986127 ... -45.64986127 -45.64986127 -45.64986127] [-45.64986127 -45.64986127 -45.64986127 ... -45.64986127 -45.64986127 -45.64986127] [-45.64986127 -45.64986127 -45.64986127 ... -45.64986127 -45.64986127 -45.64986127] ... [ 63.81665437 63.81665437 63.81665437 ... 63.81665437 63.81665437 63.81665437] [ 63.81665437 63.81665437 63.81665437 ... 63.81665437 63.81665437 63.81665437] [ 63.81665437 63.81665437 63.81665437 ... 63.81665437 63.81665437 63.81665437]]
print(trendV.shape)
print(trendM.shape)
(10512,) (10512, 68)
dtanomJ = anomJ - trendM
dtanomJ.shape
(10512, 68)
vArea = np.cos(gpcpst[:,0]*np.pi/180.)
dtanomAW = np.sqrt(vArea)*dtanomJ.T
# computing SVD from the area-weighted anomaly matrix anomAW
U, S, Vh = np.linalg.svd(dtanomAW.T,full_matrices=False)
print(U.shape,S.shape,Vh.shape)
(10512, 68) (68,) (68, 68)
# define function
def mapmatr():
q = np.zeros((144,73))
for ii in range(0,144):
q[ii,:] = U[:,0]/(np.sqrt(np.cos(gpcpst[:,0]
*np.pi/180.)))
return q
#Fig 10.10
# plot EOF1
# prepare figure
plt.figure(figsize=(12,12))
plt.subplot(211)
# create data using SVD
mapmatr = (np.reshape(U[:,1]/(np.sqrt(np.cos(gpcpst[:,0]
*np.pi/180.))),(73,144)))
mapmatr2 = mapmatr[:,range(0,mapmatr[0,:].size)]
# using the basemap package to put the cylindrical projection map into the image
eof = Basemap(projection='cyl',llcrnrlat=-90.,urcrnrlat=90.,\
llcrnrlon=0.,urcrnrlon=360.,resolution='c')
# shifting the data because
lons2, data2 = eof.shiftdata(lon_vals, datain = mapmatr2)
# draw coastlines, latitudes, and longitudes on the map
eof.drawcoastlines(color='black', linewidth=1)
eof.drawparallels(np.arange(-90.,91.,30.), labels = [1,0,0,1], fontsize=15)
eof.drawmeridians(np.arange(-180.,181.,60.), labels= [1,0,0,1], fontsize=15)
eof.drawcountries()
limits = np.linspace(-.04,.04,51)
# plot EOF1 on contour map
eof_plt = plt.contourf(np.array(lons2),np.array(lat_vals),data2,limits,cmap = myColMap)
# set labels and colorbar
bounds = np.array([-0.04,-0.02,0,0.02,0.04])
efo = plt.colorbar(eof_plt, ticks=bounds, shrink = 0.85)
efo.ax.tick_params(labelsize='large')
plt.text(375, 93, 'Scale', size=16)
plt.xlabel('Longitude',labelpad = 30)
plt.ylabel('Latitude',labelpad =40)
plt.title('January EOF1 from 1948-2017 NCEP \n De-Trended Standardized Temp. Anomaly Data', pad = 10)
# retrieve PC1 from SVD
pcdat = Vh[1,:]
# open bottom plot
plt.subplot(212)
# plot PC1
TIME = np.array(range(1948,2016))
plt.scatter(TIME,pcdat,marker = "o",facecolors='none',edgecolors='k')
plt.plot(TIME,pcdat,color='k')
# set labels
plt.title("PC1 of NCEP RA Jan De-Trended Standardized SAT: 1948-2017", pad = 10)
plt.xlabel("Year")
plt.ylabel("PC Values")
plt.grid()
plt.tight_layout()
plt.show()
#Fig 10.11
# prepare figure
plt.figure(figsize=(12,12))
# create data from SVD
mapmatr = (np.reshape(U[:,2]/(np.sqrt(np.cos(gpcpst[:,0]
*np.pi/180.))),(73,144)))
mapmatr2 = mapmatr[:,range(0,mapmatr[0,:].size)]
plt.subplot(211)
# using the basemap package to put the cylindrical projection map into the image
eof = Basemap(projection='cyl',llcrnrlat=-90.,urcrnrlat=90.,\
llcrnrlon=0.,urcrnrlon=360.,resolution='c')
# shifting the data
lons2, data2 = eof.shiftdata(lon_vals, datain = mapmatr2)
# draw coastlines, latitudes, and longitudes on the map
eof.drawcoastlines(color='black', linewidth=1)
eof.drawparallels(np.arange(-90.,91.,30.), labels = [1,0,0,1], fontsize=15)
eof.drawmeridians(np.arange(-180.,181.,60.), labels= [1,0,0,1], fontsize=15)
eof.drawcountries()
limits = np.linspace(-.04,.04,51)
# plot EOF2
eof_plt = plt.contourf(np.array(lons2),np.array(lat_vals),data2,limits,cmap = myColMap)
# set labels and colorbar
bounds = np.array([-0.04,-0.02,0,0.02,0.04])
efo = plt.colorbar(eof_plt, ticks=bounds, shrink = 0.85)
efo.ax.tick_params(labelsize='large')
plt.text(375, 93, 'Scale', size=16)
plt.xlabel('Longitude',labelpad = 30)
plt.ylabel('Latitude',labelpad =40)
plt.title('January EOF2 from 1948-2017 NCEP \n De-Trended Standardized Temp. Anomaly Data', pad = 10)
# retrieve PC2 data
pcdat = Vh[2,:]
# open bottom plot
plt.subplot(212)
# plot PC1
TIME = np.array(range(1948,2016))
plt.scatter(TIME,-pcdat,marker = "o",facecolors='none',edgecolors='k')
plt.plot(TIME,-pcdat,color='k')
# set labels
plt.title("PC2 of NCEP RA Jan. Standardized SAT: 1948-2017", pad = 10)
plt.xlabel("Year")
plt.ylabel("PC Values")
plt.grid()
plt.tight_layout()
plt.show()
# EOF from de-trended data
monJ = np.array(range(0,816,12))
gpcpdat = GPCPST.iloc[:,2:817]
gpcpJ = gpcpdat.iloc[:,monJ]
climJ = gpcpJ.mean(axis=1)
sdJ = gpcpJ.std(axis=1)
# create desired variables for de-trended data
anomJ = ((gpcpdat.iloc[:,monJ].T-climJ)/sdJ).T
vArea = np.cos(gpcpst[:,0]*np.pi/180.)
anomA = vArea*anomJ.T
anomA.shape
(68, 10512)
# compute the de-trended data
JanSAT = anomA.T.sum(axis=0)/vArea.sum()
JanSAT.shape
(68,)
#Fig 10.12
# set up figure
plt.figure(figsize=(12,7))
# create time variable
TIME = np.linspace(1948,2017, 68)
# create linear regression object
lm = linear_model.LinearRegression()
lm.fit(TIME.reshape(-1,1), JanSAT)
pred = lm.predict(TIME.reshape(-1,1))
# plot linear regression
plt.plot(TIME, pred, "-",color="red", linewidth=2)
# plot data
plt.plot(TIME, JanSAT, "-ok")
# set labels
plt.title("Global Average Jan. SAT Anomalies from NCEP RA", pad = 10)
plt.text(1950,0.35,"Linear Trend ${}\degree$C per Century".format(np.round(lm.coef_,3)[0]*100), color="r", fontsize=18)
plt.ylabel("Temperature [$\degree$C]")
plt.xlabel("Year")
plt.grid()
plt.show()
# recreate desired variables
monJ = np.array(range(0,826,12))
gpcpdat = GPCPST.iloc[:,2:826]
gpcpJ = gpcpdat.iloc[:,monJ]
climJ = gpcpJ.mean(axis=1)
# define function and make instance of function
def anomJ_func3():
rslt = pd.DataFrame(np.zeros((10512, 69)),columns=tm1[monJ])
for i in range(0,69):
rslt.iloc[:,i] = gpcpdat.iloc[:,monJ[i]]-climJ
return rslt
anomJ = anomJ_func3()
# create time variable
TIME = np.linspace(1948,2017, 69)
# create trend V function and instance of trend V
def trendV():
trendV = np.zeros(10512)
for i in range(0,10512):
regr.fit(np.reshape(TIME,(69,1)),
np.reshape(np.array(anomJ.iloc[i,:]),(69,1)))
trendV[i] = regr.coef_
return trendV
trendV = trendV()
# reshape data into desired form
mapmat1 = np.reshape([10*trendV],(73,144))
# create and use function
def mapv1_func():
zeros = np.zeros((73,144))
for i in range(0,73):
for j in range(0,144):
if mapmat1[i,j] >= 1.:
zeros[i,j] = 1.
else:
zeros[i,j] = mapmat1[i,j]
return zeros
mapv1 = mapv1_func()
# create and use function
def mapmat_func():
zeros = np.zeros((73,144))
for i in range(0,73):
for j in range(0,144):
if mapv1[i,j] <= -1.:
zeros[i,j] = -1.
else:
zeros[i,j] = mapv1[i,j]
return zeros
mapmat3 = mapmat_func()
#Fig 10.13
# prepare figure
plt.figure(figsize=(14., 7.))
# using the basemap package to put the cylindrical projection map into the image
trend = Basemap(projection='cyl',llcrnrlat=-90.,urcrnrlat=90.,\
llcrnrlon=0.,urcrnrlon=360.,resolution='c')
# shifting the data because
lons2, data3 = trend.shiftdata(lon_vals, datain = mapmat3, lon_0=180)
# draw coastlines, latitudes, and longitudes on the map
trend.drawcoastlines(color='black', linewidth=1)
trend.drawparallels(np.arange(-90.,91.,30.), labels = [1,0,0,1], fontsize=17)
trend.drawmeridians(np.arange(-180.,181.,60.), labels= [1,0,0,1], fontsize=17)
trend.drawcountries()
limits = np.linspace(-1.1,1.1,50)
# plot data
eof_plt = plt.contourf(np.array(lons2),np.array(lat_vals),data3,limits,cmap = myColMap)
# set labels and colorbar
efo = plt.colorbar(eof_plt, ticks=[1,0.5,0,-0.5,-1], shrink = 0.80)
plt.text(375, 95, 'Scale', size=16)
plt.xlabel('Longitude',labelpad = 40)
plt.ylabel('Latitude',labelpad = 65)
plt.title('Trend of the NCEP RA1 Jan. 1948-2017 \n Anomaly Temp. [$\degree$C/Century]', pad = 8)
plt.show()
#Download the following data set from NOAA into your active folder
#https://www.esrl.noaa.gov/psd/repository/entry/show?
# entryid=synth%3Ae570c8f9-ec09-4e89-93b4-babd5651e7a9%
# 3AL25jZXAucmVhbmFseXNpcy5kZXJpdmVkL3N1cmZhY2UvYWlyLm1vbi5tZWFuLm5j
ncd = nc.Dataset("precip.mon.mean.nc","r+")
# define variables
lon_vals = ncd.variables['lon'][:]
lat_vals = ncd.variables['lat'][:]
time = ncd.variables['time']
time_unit = time.units
precnc = ncd.variables['precip']
#Fig 10.14
# plot a 90S-90N temp along a meridional line at 180E
nc_x = np.linspace(-90,90,72)
plt.plot(nc_x,precnc[0,:,63],color='k' )
# set variables
plt.xlabel('Latitude')
plt.ylabel('Precipitation [mm/day]')
plt.title('90S-90N Precipitation along a Meridional Line at 160E: Jan. 1979', size=20)
plt.grid()
plt.show()
# write the data as space-time matrix with a header
precst = np.zeros((10368,451))
temp = precnc[0,:,:]
# fill precst with data from precnc
for i in range(451):
precst[:,i] = precnc[i,:,:].flatten()
# create and reshape Lat and Lon variable for DataFrame
LAT = list(lat_vals.data) * 144
LON1 = [np.repeat(i,72) for i in lon_vals.data]
LON = [i for j in LON1 for i in j]
gpcpst_ = pd.DataFrame({"Lat":LAT,"Lon":LON})
gpcpst = pd.concat([gpcpst_, pd.DataFrame(precst)], axis=1)
gpcpst.iloc[889:892,:5]
Lat | Lon | 0 | 1 | 2 | |
---|---|---|---|---|---|
889 | -26.25 | 31.25 | 0.057521 | 0.180531 | 0.210445 |
890 | -23.75 | 31.25 | 0.108556 | 0.256279 | 0.288389 |
891 | -21.25 | 31.25 | 0.087190 | 0.273805 | 0.256987 |
# create desired Colormap
colors = ["black", "black","purple","crimson","red","red","red","tomato","lightpink",
"pink","peachpuff","yellow","yellow", "yellowgreen","limegreen","limegreen","mediumaquamarine",
"skyblue","lightskyblue","wheat","wheat"]
colors.reverse()
myColMap = newColMap(colors)
#Fig 10.15(a)
# prepare variables for plotting
climmat = precnc[0,:,:]
for i in range(451):
climmat = climmat + precnc[i,:,:]
climmat = climmat/451
mapmat = climmat
# suppress values into the (0,10) range
for i in range(72):
for j in range(144):
if mapmat[i,j] > 10:
mapmat[i,j] = 10
if mapmat[i,j] < 0:
mapmat[i,j] = 0
myint = np.linspace(0, 10,11)
# prepare figure
plt.figure(figsize=(15., 7.))
# using the basemap package to put the cylindrical projection map into the image
trend = Basemap(projection='cyl',llcrnrlat=-90.,urcrnrlat=90.,\
llcrnrlon=0.,urcrnrlon=360.,resolution='c')
# shifting the data because
lons2, data3 = trend.shiftdata(lon_vals, datain = mapmat, lon_0=180)
# draw coastlines, latitudes, and longitudes on the map
trend.drawcoastlines(color='black', linewidth=1)
trend.drawparallels(np.arange(-90.,91.,30.), labels = [1,0,0,1], fontsize=15)
trend.drawmeridians(np.arange(-180.,181.,60.), labels= [1,0,0,1], fontsize=15)
trend.drawcountries()
# plot data
eof_plt = plt.contourf(np.array(lons2),np.array(lat_vals),mapmat,myint,cmap = myColMap)
# set labels and colorbar
efo = plt.colorbar(eof_plt, ticks=[10,9,8,7,6,5,4,3,2,1], shrink = 0.85)
plt.xlabel('Longitude',labelpad = 30)
plt.ylabel('Latitude',labelpad =40)
plt.title('GPCP 1979-2016 Precipitation Climatology [mm/day]', size=18, fontweight="bold")
plt.text(367, 94, '[mm/day]', size = 15)
plt.show()
mapmat.shape
(72, 144)
# create and prepare data
sdmat = (precnc[0,:,:]-climmat)**2
for i in range(1,451):
sdmat = sdmat + (precnc[i,:,:]-climmat)**2
sdmat = np.sqrt(sdmat/451)
mapmat = sdmat
# suppress values into the (0,5) range
for i in range(72):
for j in range(144):
if mapmat[i,j] > 5:
mapmat[i,j] = 5
if mapmat[i,j] < 0:
mapmat[i,j] = 0
#Fig 10.15(b)
myint = np.linspace(0, 5,25)
# prepare figure
plt.figure(figsize=(15., 7.))
# using the basemap package to put the cylindrical projection map into the image
trend = Basemap(projection='cyl',llcrnrlat=-90.,urcrnrlat=90.,\
llcrnrlon=0.,urcrnrlon=360.,resolution='c')
# shifting the data because
lons2, data3 = trend.shiftdata(lon_vals, datain = mapmat, lon_0=180)
# draw coastlines, latitudes, and longitudes on the map
trend.drawcoastlines(color='black', linewidth=1)
trend.drawparallels(np.arange(-90.,91.,30.), labels = [1,0,0,1], fontsize=15)
trend.drawmeridians(np.arange(-180.,181.,60.), labels= [1,0,0,1], fontsize=15)
trend.drawcountries()
# plot data
eof_plt = plt.contourf(np.array(lons2),np.array(lat_vals),mapmat,myint,cmap = myColMap)
# set labels and colorbar
efo = plt.colorbar(eof_plt, ticks=[5,4.5,4,3.5,3,2.5,2,1.5,1,0.5,0], shrink = 0.85)
plt.xlabel('Longitude',labelpad = 30)
plt.ylabel('Latitude',labelpad =40)
plt.title('GPCP 1979-2016 Standard Deviation of Precipitation [mm/day]', size=18, fontweight="bold", pad = 10)
plt.text(367, 94, '[mm/day]', size = 15)
plt.show()